Rowmotion on the chain of V's poset and whirling dynamics
Mathew Plante and Tom Roby FPSAC 2024, Bochum, Germany

overview

We connect the well-studied operatio on P-partitions with bounded labels.

- One of our main results is an equivariant bijection that carries one to the other for any finite poset P.

We then leverage this to study the rowmotion action on the "chain of V 's" poset $\mathrm{V}_{k}:=\mathrm{V} \times[k]$ (a 3-element V -shaped poset cross a finite chain), which has surprisingly good dynamical properties.
We also generalize this to the case where we replace V with a n-claw, a poset with a single minimal element covered by exactly n incomparable elements. In both cases we obtain both periodicity results and homomesy.

Definition: Homomesy [PrR13]
Let G be a finite group acting on a finite set S. Let st : $S \rightarrow \mathbb{Q}$ be a statistic. If $\mathcal{O} \subseteq S$, then we let

$$
\text { st } \mathcal{O}=\sum_{x \in \mathcal{O}} \operatorname{st} x
$$

Call st homomesic if st $\mathcal{O} / \# \mathcal{O}$ is constant over all orbits \mathcal{O}, where the hash-tag means cardinality. In particular, st is c-mesic if, for all orbits \mathcal{O},

$$
\frac{\mathrm{stO}}{\# \mathcal{O}}=
$$

Homomesy for binary strings under rotation [PrR13] $S_{n, k}:=\left\{w_{1} w_{2} \ldots w_{n} \mid w_{i} \in\{0,1\}\right.$ for all i, and having k ones $\}$ under the cyclic rotation map, $w_{1} w_{2} \ldots w_{n} \mapsto w_{2} w_{1} \ldots w_{n-1}$ with the inversion statistic
$\operatorname{inv} w_{1} w_{2} \ldots w_{n}=\#\left\{(i, j) \mid i<j\right.$ and $\left.w_{i}>w_{j}\right\}$
Ex. When $n=4$ and $k=2$.

Definition: Rowmotion and transfer maps
Let P be a generic poset. We define natural bijections between the sets $\mathcal{J}(P)$ of all order ideals (aka downsets) of $P, \mathcal{F}(P)$ of all order filters (aka upsets) of P, and $\mathcal{A}(P)$ of all antichains of P.
The map $\Theta: 2^{P} \rightarrow 2^{P}$ where $\Theta(S)=P \backslash S$ is the complement of S (sending order ideals to filters and vice versa)
The up-transfer $\nabla: \mathcal{J}(P) \rightarrow \mathcal{A}(P)$, where $\nabla(I)$ is the set of maximal elements of I. For an antichain $A \in \mathcal{A}(P)$,
$\nabla^{-1}(A)=\{x \in P: x \leq y$ for some $y \in A\}$.
The down-transfer $\Delta: \mathcal{F}(P) \rightarrow \mathcal{A}(P)$, where $\Delta(F)$ is the set of minimal elements of F. For an antichain $A \in \mathcal{A}(P)$, $\Delta^{-1}(A)=\{x \in P: x \geq y$ for some $y \in A\}$
Order-ideal rowmotion (shortened for this poster to just rowmotion) is the map $\rho: \mathcal{J}(P) \rightarrow \mathcal{J}(P)$ given by the composition $\rho_{J}=\nabla^{-1} \circ \Delta \circ \theta$
Example of Order Ideal Rowmotion

Definition: Rowmotion Toggles

A bijective function $f: P \rightarrow[p]$ (with \#P $=p$) such that $f(x)<f(y)$ whenever $x<_{p} y$ is called a linear extension. We denote by $\mathcal{L}(P)$ the set of all linear extensions of P. Rowmotion can be realized as a composition of toggling involutions by Cameron and Fon-der-Flaass [CF95] "toggling once at each element of P along any linear extension (from top to bottom).

$$
\hat{\tau}_{x}(I)= \begin{cases}I \backslash\{x\} & \text { if } x \in I \text { and } I \backslash\{x\} \in \mathcal{J}(P) \\ I \cup\{x\} & \text { if } x \notin I \text { and } I \cup\{x\} \in \mathcal{J}(P) \\ I & \text { otherwise. }\end{cases}
$$

Toggles are the $k=1$ case of the more general definition of whirling below.

Definition: Whirling

Let $[0, k]=\{0,1,2, \ldots, k\}$ and $\mathcal{F} \subseteq[0, k]^{X}$, where X is a set, be a family of functions $f: X \rightarrow[0, k]$
For $f \in \mathcal{F}$ we define the whirl $w_{x}: \mathcal{F} \rightarrow \mathcal{F}$ at $x \in X$ as follows: repeatedly add 1 (modulo $k+1$) to the value of $f(i)$ until we get a function in \mathcal{F}, leaving all other labels alone. As before whirling depends on the ambient family of functions \mathcal{F}. Then whirling $w: \mathcal{F} \rightarrow \mathcal{F}$ is the composition of all w_{x} for $x \in X$, taken in some fixed order.
Joseph, Propp, and Roby [JPR18], initially definied whirling on function families (such as injective or surjective) $\mathcal{F} \subseteq[k]^{[n]}$, with $w:=w_{n} w_{n-1} \cdots w_{1}$, obtaining homomesy results and conjectures for the indicator function statistics. We generalize this to whirling k-bounded P-partitions of posets [PR24+].
Example of Whirling functions
Let $\mathcal{F}=\left\{f \in[0,4]^{[5]}: f(1) \neq f(2)\right\}$. If we apply w_{2} to $f=43213$, adding 1 in the second position gives 44213 , but this is not in \mathcal{F}. Adding 1 again in this position gives the result: $w_{2}(f)=40213$.

Definition: k-bounded P-Partitions

A P-partition is a map σ from P to \mathbb{N} such that if $x<p y$, then $\sigma(x) \geq \sigma(y)[$ Sta11]
$A k$-bounded P-partition is a function $f: P \rightarrow[0, k]$ such that if $x \leq p y$, then
$f(x) \geq f(y)$. Let $\mathcal{F}_{k}(P)$ be the set of all such functions.

Definition: Whirling k-bounded P-partitions

For any linear extension $\left(x_{1}, x_{2}, \ldots, x_{p}\right) \in \mathcal{L}(P)$. We define whirling k-bounded P-partitions as $w=w_{x}, w_{x_{2}} \cdots w_{x, p}$, teratively computing the whirl at each poset elemnt down a linear extension. This is independent of the choice of linear extension since w_{x} and w_{y} commute whenever neither x covers y nor y covers x

Equivariant bijection between order-ideal rowmotion on poset $P \times[k]$ and whirling P-partitions on

There is a natural bijection between order ideals of a poset P and 1-bounded P-partitions in $\mathcal{F}_{1}(P)$. Specifically, a 1-bounded P-partition in $\mathcal{F}_{1}(P)$ is simply the indicator function of an order ideal $I \in J(P)$. We extend this to an equivariant bijection $\mathcal{F}_{k}(P) \rightarrow \mathcal{J}(\mathcal{P} \times[k])$ which sends w to ρ.

We call the chains $\{(x, 1),(x, 2), \ldots,(x, k)\} \subseteq P \times[k]$, for $x \in P$, the fibers of $P \times[k]$, and construct an equivariant bijection that first sends w_{x} to order-ideal toggling down the fiber $\{(x, 1),(x, 2), \ldots,(x, k)\}$.

Theorem [PR24+]: Connecting whirling with rowmotion
For any linear extension $\left(x_{1}, x_{2}, \ldots, x_{p}\right) \in \mathcal{L}(P)$. There is an equivariant bijection between $\mathcal{F}_{k}(P)$ and $\mathcal{J}(P \times[k])$ which sends whirling, $w=w_{x_{1}} w_{x_{2}} \cdots w_{x_{p}}$, to rowmotion on $\mathcal{J}(P \times[k])$.

Whirling P-partitions of V and Claw posets

[^0]Whorm Anatomy
Orbit boards of whirling on $V \times[k]$ can be uniquely partitioned into tiles calle whorms. Whorms are maximal collections of labels in the orbit board, two labels on the row are connected if they have the same label and one is the labe of the minimal element, and vertically connected if the label above is one less than the label below.

Whorms are composed of two parts. A head which lies in the column of the minimal element, and the tail(s) which lie in any of the other columns. In the case of $\mathrm{V} \times[k]$ we have either one-tailed whorms, or two-tailed whorms. We think of the whorms as starting with the label 0 and terminating with the label k. Let $t(\varsigma)$ be the number of rows containing elements of the tail, and let $h(\varsigma)$ be the number of rows containing elements of the head. It follows $\mathrm{t}(\varsigma)+\mathrm{h}(\varsigma)=k+2$ for each whorm ς

Since all whorms terminate in the column of the minimal element, they get a natural cyclic ordering. Two whorms are consecutive if one whorms head is adjacent to and above to the other. We number them moving down the poset. We will use the orbit board of $\mathrm{V} \times[4]$ on the right as an example; let ς_{1} be the green whorm, ς_{2} be the red whorm, ς_{3} be the blue whorm, and ς_{4} be the orange whorm. For example, $t\left(\varsigma_{1}\right)=4$ and $h\left(\varsigma_{1}\right)=2$

Lemma [PR24+]

Given an orbit board of whirling k-bounded P-partitions of $\mathrm{V} \times[k]$ with one-tailed whorms, let $\varsigma_{1}, \varsigma_{2}, \varsigma_{3}$, and ς_{4} be consecutive, then

Furthermore, if the orbit board contains two-tailed whorms, then $t\left(\varsigma_{1}\right)=t\left(\varsigma_{3}\right)$.

Proposition [PR24+]

Given an orbit board of whirling k-bounded P-partitions of $\mathrm{V} \times[k]$ with one-tailed whorms, there are at most six distinct whorms.

We extend our results for the chain of V's poset to a "chain of claws We extend our results for the chain of V's poset to a "chain of claws" already extend with only limited difficulty to this new setting.
The claw poset, C_{n}, has elements $\left\{b_{1}, \ldots, b_{n}, \widehat{0}\right\}$ where each b_{i} covers $\widehat{0}$. For example, the Hasse diagram of C_{4} would be . The chain of claws poset is defined to be $\mathrm{C}_{n} \times[k]$. Using the established equivarian bijection between $\mathcal{J}\left(\mathrm{C}_{n} \times[k]\right)$ and k-bounded P-partitions $\mathcal{F}_{k}\left(\mathrm{C}_{n}\right)$ that sends rowmotion to whirling, we can prove similar homomesies and periodicity to that of the special case $\mathrm{C}_{2}=\mathrm{V}$. Instead of triples of numbers, we will consider orbit boards of $(n+1)$-tuples on $[0, k]$, $\left(f\left(b_{1}\right), f\left(b_{2}\right), \ldots, f\left(b_{n}\right), f(\widehat{0})\right)$, satisfying $f\left(b_{i}\right) \leq f(\widehat{0})$ for each $i \in[n]$.

Note that the first and third columns in orbit board on the right are identical. This is no accident. If two (or more) entries among the first n in a given row are the same, then those positions (columns) remain the in a given row are the same, then those oritions is because the entries
b_{1}, \ldots, b_{n} represent the result of whirling at incomporable elements of the poset C_{n}. Furthermore, these two entries must belong to the same whorm, because each will be whorm-connected via $\widehat{0}$ exactly when thei alues match with the value of the minimal element So orbit boards for whirling on C_{n} can decompose into multi-tailed worms with up to n tails.

There are similar, but harder to state, propositions for the number of whorms in an orbit of whirling k-bounded P-partitions of C_{n} and thei symmetries in the paper

An orbit board of whirling on k-bounded P-partitions of $\mathrm{C}_{4} \times[3]$. The claw poset C_{4} drawn underneath to indicate each column, associated element in C_{4}

Homomesy and Order for rowmotion on order ideals of $\mathrm{V} \times[k]$

Theorem [PR24+]]: Order of rowmotion on a chain of V's
The order of rowmotion on $\mathcal{J}(\mathrm{V} \times[k])$ is $2(k+2)$. Furthermore, $\rho(I)$ is an order ideal which is a reflection of I across the center fiber
Theorem [PR24+]: Symmetry of statistics across the center chain
Let χ_{x} be the indicator function for $x \in \mathrm{~V} \times[k]$. We have the following homomesies for the action of ρ on $\mathcal{J}(\mathrm{V} \times[k])$

1. The statistic $\chi_{\ell_{i}}-\chi_{r_{i}}$ is 0 -mesic for all $i \in[k]$.
2. The statistic $\chi_{\ell_{1}}+\chi_{r_{1}}-\chi_{c_{k}}$ is $\frac{2(k-1)}{k+2}$-mesic.

Theorem [PR24+]: Homomesy of flux capacitor configuration of cardinality statistics
For $k>1$. Let $F_{i}=\chi_{\ell_{i}}+\chi_{r_{i}}+\chi_{c_{i-1}}$ (we call this a configuration a "flux capacitor"). Under the action of rowmotion on order ideals of $\mathcal{J}\left(\mathrm{V}_{k}\right)$, the difference of arbitrary flux-capacitors is $F_{i}-F_{j}$ is $\frac{3(j-i)}{k+2}$-mesic.
section of $\mathrm{V} \times[k]$ with elements of a flux capacitor configuration ℓ_{i}, r_{i} and c_{i-1}, shaded and c_{i-1},
black.

Homomesy and Order for rowmotion on order ideals of $\mathrm{C}_{n} \times[k]$

Theorem [PR24+]: Order of rowmotion on a chain of claws
Let $m=\min (k, n)$. The order of rowmotion on $\mathcal{J}\left(\mathrm{C}_{n} \times[k]\right)$ divides $m!(k+2)$.
The order in this Theorem is exact for most (but not all) pairs of n and k
Theorem [PR24+]: Symmetry of statistics for non-minimal label
Let $\chi_{(i, j)}$ be the indicator function for $(i, j) \in \mathrm{C}_{n} \times[k]$. Then for the action of rowmotion on $\mathcal{J}\left(\mathrm{C}_{n} \times[k]\right)$, the statistic $\chi_{(i, a)}-\chi_{(j, a)}$ is 0 -mesic for all $i, j \in[n]$ and $a \in[k]$.

Theorem [PR24+]: Homomesy of generalized flux capacitor configuration for claw posets
Let $B_{i}=\chi_{(i-1, \widehat{0})}+\sum_{j=1}^{n} \chi_{(i, j)}$. Then for the action of rowmotion on $\mathcal{J}\left(\mathrm{C}_{n} \times[k]\right), B_{i}-B_{j}$ is $\frac{(j-i)(n+1)}{k+2}$-mesic for all $i, j \in[n]$.

Selected References (See abstract for more references and details)

Wiskunde, no. ZW 24/74, 1974

[CF95] P. Cameron and D. Fon-Der-Flaass, Orbits of antichains revisited, Eur. J. Combin., 16:545-554, 1995,
[JPR18] M. Joseph, J. Propp, and T. Roby, Whirling injections, surjections, and other functions between finite sets, 2018
[JR18] M. Joseph and T. Roby, Toggling independent sets of a path graph, Electron. J. Combin., 25:P1.18, 2018
[PR24+] M. Plante and T. Roby, Rowmotion on the chain of V's poset and whirling dynamics, https://arxiv.org/abs/2405.07984 [PrR13] J. Propp and T. Roby, Homomesy in products of two chains, Electron. J. Combin., 22:P3.4, 2015.
[Sta11] R. Stanley, Enumerative Combinatorics: Volume 1, 2nd Edition, no. 49 in Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2011
[Str16] J. Striker, Rowmotion and generalized toggle groups, 2016. arXiv:1601.03710
[SW12] J. Striker and N. Williams, Promotion and rowmotion, European J. Combin., 33:1919-1942, 2012.

[^0]: Let P be the V poset with labels ${ }^{{ }^{\ell}}{ }_{c}{ }^{\prime}{ }^{r}, k=2$, and $w=w_{c} w_{r} w_{\ell}$.

