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@ Rowmotion on the chain of V's poset

© Rowmotion on the chain of claws poset



Definition of whirling on posets

Let Fx be the set of order-reversing function from P to {0,1,..., k}. Also
referred to as P-partitions.
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Definition

Let P be a poset. For f € Fx(P) and x € P define wy : Fx(P) — Fk(P),
called the whirl at x, as follows: repeatedly add 1 (mod k + 1) to the value
of f(x) until we get a function in Fyx(P). This new function is w,(f).
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Whirling

Proposition

If x,y € P are incomparable, then w,w, (f) = wyw,(f).

Since x and y are incomparable, there are no inequalities constraining the
relationship between f(x) and f(y). So wyw, = w,w,.

Definition

Let (x1,X2,...,Xp) be a linear extension of P. Define w : Fi(P) — Fi(P)

by w i= Wiy Wy, . .. Wy,

The above proposition shows that this is well-defined, since one can get
from any linear extension to any other by a sequence of interchanges of
incomparable elements.



Example of whirling V
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We whirl the example .  first at ¢, r, then c.
c

Start with (0,2,2) € F»(V).
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Order ideals

o Let J(P) denote the set of order ideals of a poset P.
That is, for | C V/(n), I € J, if and only if x € | = y € [ for all
y < x.

Order Ideal Order Filter Antichain



Rowmotion on order ideals

@ Denote rowmotion on order ideals by p. We define p on order ideals by
taking the minimal elements of the complement and saturating down.
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@ Denote rowmotion on order ideals by p. We define p on order ideals by
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This map and its inverse have been considered with varying degrees of
generality by many people: Duchet, Brouwer and Schrijver, Vameron and
Fon Der Flaass, Fukuda, Panyushev, Rush and Shi, and Striker and
Williams, who named it rowmotion.



Rowmotion as a product of toggles

@ Rowmotion has an alternate definition as a composition of toggling
involutions by Cameron and Fon-der-Flaass [CaFI95]

INA{i} ifieland I~ {i} € T(P)
i(l)=<1u{i} ifigland lU{i} € T(P)

/ otherwise.



Rowmotion as a product of toggles

@ Rowmotion has an alternate definition as a composition of toggling
involutions by Cameron and Fon-der-Flaass [CaFI95]

4
I~ {i} ifieland I~ {i}eT(P) VRN
() =<q1u{i} ifiglandlU{i}eT(P) 3 2

/ otherwise. \ /
1



Rowmotion as a product of toggles

@ Rowmotion has an alternate definition as a composition of toggling
involutions by Cameron and Fon-der-Flaass [CaFI95]

4
I~ {i} ifieland I~ {i}eT(P) VRN
() =<q1u{i} ifiglandlU{i}eT(P) 3 2

/ otherwise. \ /
1

(e



Rowmotion as a product of toggles

@ Rowmotion has an alternate definition as a composition of toggling
involutions by Cameron and Fon-der-Flaass [CaFI95]

4
I~ {i} ifieland I~ {i}eT(P) VRN
ni()=<1u{i} ifiglandlU{i}eJ(P) 3

2
/ otherwise. \ /
1

ral e e e

This coincides with whirling labeling from F3(P

VRN VRN VRN VRN VRN



Chain-factor posets

Definition J

A chain-factor poset is a poset P such that P = Q x [n] for some poset Q.




Equivariant bijection between whirling and rowmotion

Theorem

There is an equivariant bijection between F (P) and J (P x [k]) (order
ideals of chain-factor posets) which sends w to p.
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Definition
For any x € P and f € Fx(P), define (x, f) to be a whirl element. The
whirl element (y, g) is whirl successive to (x, f) if either:

Q@ y=xand g(y) = w(f)(x) = f(x) +1, or

@ x covers y, f =g, and f(x) = g(y).
Two elements in a sequence of whirl successive elements are called
whorm-connected. A whorm is a maximal set of whirl successive elements. |

An orbit of whirling F2(P) (for P = [2] x [2]) with its four whorms
indicated by the same color and (redundantly) node-shape.

O <D A\ ) [
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Defining homomesy

Definition (Propp—Roby [PR15, Def. 1.1])

Let the invertible action 7 act on the set S. Let f be the statistic
f: S — K. Assume every T-orbit is finite. We say f is homomesic if there
exists ¢ € K such that

ZSGO f(S) =c

#0
for all orbits O. In such a case we say the triple (S, 7, f) exhibit
homomesy with average c.
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Definition (Propp—Roby [PR15, Def. 1.1])

Let the invertible action 7 act on the set S. Let f be the statistic
f: S — K. Assume every T-orbit is finite. We say f is homomesic if there
exists ¢ € K such that

ZSGO f(S)

#0
for all orbits O. In such a case we say the triple (S, 7, f) exhibit
homomesy with average c.

=C

e If § is finite, then we can switch out ¢ from the equation above with
the global average.

2seof(s) _ Ysesf(s)
#0 #S

o If (S, 7, f) exhibit homomesy with average ¢ we say f is c-mesic.
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Homomesy of product of two chains

Let Xp be the indicator function of p in order ideal /. Consider the statistic

pGP XP

L

(242+44+4+3)/5=3

L

(1+3+5+6+0)/
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Homomesy of product of two chains

Let Xp be the indicator function of p in order ideal /. Consider the statistic

pGP XP

L

(242+44+4+3)/5=3

L

(1+3+5+6+0)/

Theorem (Propp—Roby [PR15])

The action of rowmotion on J([a] x [b]) with cardinality statistic is
ab/2-mesic.




Rowmotion on the chain of V's poset
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The poset V x [k]

@ Let V be the three-element partially ordered set with Hasse diagram

¢ r
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C
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The poset V x [k]

@ Let V be the three-element partially ordered set with Hasse diagram

¢ r
NS

C

@ The poset of interest is V x [k]

£y rk
N
: Ck
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£ r

\\ /\
4
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Order-ideal rowmotion on V x [K]

i
et
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Theorem

Order ideals of V x [k] are reflected about the center chain after k + 2
iterations of p, and furthermore, the order of p on order ideals of V x [k] is

2(k +2).

16



Map to order-reversing functions on V

¢ r
NS

C

@ Define Fi(V) = {(t,c,r) €{0,...,k}3: 4, r <c}.
@ Define ¢ 7(V x [K]) = Fi(V) by (1) = (3 xen 3 xer: - xr ).

0
6 = (03.3) 0 N,

17



Example of rowmotion orbit with triples

18



Periodicity

Theorem

122
Order ideals of V x [k] are reflected about 2 30
the center chain after k + 2 iterations of p, 3 4 1
and furthermore, the order of p on order 4 4 2 2
ideals of V x [K] is 2(k + 2). . z 2 3
140 4
2 1
Direct inspection of order-reversing functions 0 . 2 0
on V gives a straightforward proof of 1 . 3 11
periodicity. However a study of whorms 2 4 4
gives a deeper understanding of the orbit 8 i 2

structure.

19



Tiling an orbit board with whorms

Definition 122
For any x € P and f € F(P), define (x, f) 230
to be a whirl element. The whirl element 341
(v, g) is whirl successive to (x, f) if either: 4 412 I 2
0 3 3 3
@ y=xand =w(f)(x) = f(x)+1,
y = and gly) = w(F)(x) = £ ol K
@ x covers y, f =g, and f(x) = g(y). 3 g ; E
Two elements in a sequence of whirl 104 3 11
successive elements are called 5 4 4
whorm-connected. A whorm is a maximal 330
set of whirl successive elements. ) 041

The red whorm is a left whorm and a one-tailed whorm, the green whorm
is a right whorm and one-tailed whorm, and the blue whorm is a two-tailed
whorm. For a whorm &, let h(§) be the number of rows intersecting the
center column, and let t(£) be the number of rows intersecting the outer

columns. "



Center-seeking whorms

Theorem

Any orbit board of Fi(V) can be decomposed into 6 one-tailed whorms of
length k + 2 (or 2 two-tailed whorms if the functions are symmetric.) We
call these whorms, center-seeking whorms.

12 2
230
341
4 4 2 020
0 33 131
140 2 4 2
2 21 333
0 32 0 40
143 111
2 4 4
330
0 41
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Center-seeking whorms

Theorem

Any orbit board of Fi(V) can be decomposed into 6 one-tailed whorms of
length k + 2 (or 2 two-tailed whorms if the functions are symmetric.) We
call these whorms, center-seeking whorms.

0
1
2
3
0
1
2
3
i
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Using the lemma

Given a whorm £ in an orbit board of F(V), it can reasoned

h(§) 4+ t(§) = k + 2. We will place a circular order on the whorms. Let &;
and & be whorms in an orbit board of Fx(V). If there exists (c, f) € &
with f(c) = k such that (¢, w(f)) € &, then we say & is in front of &;.
We call a sequence of whorms consecutive if each is in front of the next.

Lemma ..

Given an orbit board R of w on Fi(V), let
&1,&0, and &3 be three consecutive whorms I
(not necessarily all distinct), that is, 3 is in
front of & which is in front of &1 in R.
©Q IfR is tiled entirely by one-tailed
whorms, then

t(&1) + t(&2) + t(&3) = 2(k + 2).

@ Otherwise, if R is tiled entirely by
two-tailed whorms, then

t(&1) +t(&2) =k + 2.

w

>~ WP O0ODN PS>

1
2
3
0
1
2
3
4
0
i

e~ - o[BS
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Using the lemma 2

Given a whorm £ in an orbit board of F(V), it can reasoned

h(§) 4+ t(§) = k + 2. We will place a circular order on the whorms. Let &;
and & be whorms in an orbit board of Fx(V). If there exists (c, f) € &
with f(c) = k such that (¢, w(f)) € &, then we say & is in front of &;.
We call a sequence of whorms consecutive if each is in front of the next.

Lemma

Given an orbit board with one-tailed whorms, let &1, &2,
&3, and &, be consecutive, then

t(&a) = t(&1).

Otherwise, if the orbit board contains two-tailed
whorms, then t(&1) = t(&3).

Theorem
Let (x,y,z) € Fx(V), then Wk+2(x,y,z) = (z,y,x).

- - - SEE
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Homomesy for V

Theorem
For the action of rowmotion on order ideals of V x [k]:

1 41
© The statistic x,, — xe; is 0-mesic ‘\(‘)/ ' foreachi=1,... k,

where xp is the indicator function.

@ The statistic Xy, + Xr, — Xc, IS 2k=1) _mesic.
Xt Xn Xk k—+2

25



Sketch of proof of homomesy

0
1
2
33
4 0

ZXZI + Xn — X 1 2(k + 2) rows
= (2(k+2)—3)+(2(k+2)-3)—6 032
Thus we see ; 4 i
4k +2)—12  2k—2 330
2(k+2)  k+2° 041



Flux capacitor

Let Fi = x¢;, + Xr, + X¢_1, Which has the following flux-capacitor shape in
V x [k].
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The flux capacitor homomesy

Let Fi = x¢;, + Xr, + X¢;_,. Which has the following flux-capacitor shape in
V x [k].

F3 — Fg
Theorem
For k > 1. The difference of symmetrically-placed flux-capacitor
statistics, F; — Fyio_;, is 3(kr—i;z')—mesic.

28



Rowmotion on the chain of claw's poset



Claw poset

Definition

We define the claw poset

Ch={b,..., b,,,ﬁ} where each b; covers 0.
The chain of claws poset is defined to be
Cp x [K].

For example, the Hasse diagram of Cs would
be

b1 by bz by bs

N

-~

0

Orbit of whirling F3(Cs) with whorms
high-lighted.

W N O WDNH+H O
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Label restricted whirling

Definition
For any A C [0, k], define the family of order-reversing maps

FCn) = {f : f € Fk(C,) and f(b;) € A for all j € [n]}.

Then set Wa := F£(C,) to be the map which whirls (cyclically increments
within the subset A) each label on the non-0 elements of C,,.

v

Consider f =(1,3,3,0,4,1,6) € F9(Cq). We see A(f) ={0,1,3,4} so
WA(f)(lv 3’ 37 07 47 1’ 6) = (3? 47 47 17 0) 3? 6)
The last entry remains unchanged, and the earlier entries are increasing

cyclically within the set A(f) = {0,1, 3,4}, with o := #A = 4.

31



Order of rowmotion on chain of claws

Theorem

Let w be the whirling action on k-bounded
P-partitions in F(Cp). For any f € Fi(C,)
with A = A(f) and o = a(f) = #A(f), we have
Wkt f = Wy f. Thus, wokt2)f = £,

Similar to the V x [k] case, this theorem is
proved using whorms.

Theorem

Let m = min(k + 1, n). The order of rowmotion
on the chain of claws poset J(C, x [k]) is
(k+2)lem(1,2,..., m).

W NNHEH O WNHRH O

w




Homomesies for claw poset

Theorem

Let x(i,a) denote the indicator function for (b;,a) € C, x [k]. Then for the
action of rowmotion on J(Cp x [k]), the statistic x(; ) — X(j,a) is 0-mesic
for all i,j € [n] and a € [K].

The “flux-capacitor” homomesy fails to generalize to the claw-graph
setting.

33



Future directions

Future projects include whirling investigations of
@ chains of minuscule posets,
@ chains of fence posets,
© chains of zig-zag posets, and

@ product of three-chains.
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Thank You!
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